A Domain Specific Approach To Heterogeneous Parallelism

Kunle Olukotun
kunle@stanford.edu
ppl.stanford.edu

October 22, 2010
Era of Power Limited Computing

- **Mobile**
 - Battery operated
 - Passively cooled

- **Data center**
 - Energy costs
 - Infrastructure costs
Computing System Power

\[\text{Power} = \frac{\text{Energy}}{\text{Ops}_{op}} \times \frac{\text{Ops}}{\text{second}} \]
Heterogeneous Hardware

- Heterogeneous HW for energy efficiency
 - Multi-core, ILP, threads, data-parallel engines, custom engines
- H.264 encode study

Future performance gains will mainly come from heterogeneous hardware with different specialized resources

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10)
DE Shaw Research: Anton

Molecular dynamics computer

100 times more power efficient

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize
Apple A4 in the i{Pad|Phone} Contains CPU and GPU and …
Heterogeneous Parallel Computing

- Uniprocessor
 - Sequential programming
 - C

- CMP (Multicore)
 - Threads and locks
 - C + (Pthreads, OpenMP)

- GPU
 - Data parallel programming
 - C + (Pthreads, OpenMP) + (CUDA, OpenCL)

- Cluster
 - Message passing
 - C + (Pthreads, OpenMP) + (CUDA, OpenCL) + MPI

Too many different programming models
IS IT POSSIBLE TO WRITE ONE PROGRAM AND RUN IT ON ALL THESE TARGETS?
HYPOTHESIS: YES, BUT NEED

DOMAIN-SPECIFIC

LIBRARIES AND LANGUAGES
A Solution For Pervasive Parallelism

- Domain Specific Languages (DSLs)
 - Programming language with restricted expressiveness for a particular domain

Logos of various software tools like OpenGL, SystemVerilog, MySQL, RAILS, MATLAB, and TEX are shown.
The Holy Grail of Parallel Programming
The Holy Grail of Parallel Programming

Performance

Productivity

Completeness

PPL DSLs

C/C++

Python

Ruby
Benefits of Using DSLs for Parallelism

Productivity
- Shield average programmers from the difficulty of parallel programming
- Focus on developing algorithms and applications and not on low level implementation details

Performance
- Match generic parallel execution patterns to high level domain abstraction
- Restrict expressiveness to more easily and fully extract available parallelism
- Use domain knowledge for static/dynamic optimizations

Portability and forward scalability
- DSL & Runtime can be evolved to take advantage of latest hardware features
- Applications remain unchanged
- Allows HW vendors to innovate without worrying about application portability
The PPL Vision

Applications

- Scientific Engineering
- Virtual Worlds
- Personal Robotics
- Data informatics

Domain Specific Languages

- Rendering
- Physics (Liszt)
- Scripting
- Probabilistic (RandomT)
- Machine Learning (OptiML)

Domain Embedding Language (Scala)

- Polymorphic Embedding
- Staging
- Domain Specific Opt.

Parallel Runtime (Delite, GRAMPS)

- Task & Data Parallelism
- Locality Aware Scheduling

Hardware Architecture

- OOO Cores: Programmable Hierarchies
- SIMD Cores: Scalable Coherence
- Threaded Cores: Isolation & Atomicity
- Specialized Cores: On-chip Networks, Pervasive Monitoring
We need to develop all these DSLs

Current DSL methods are unsatisfactory
Current DSL Development Approaches

- Stand-alone DSLs
 - Can include extensive optimizations
 - Enormous effort to develop to a sufficient degree of maturity
 - Actual Compiler/Optimizations
 - Tooling (IDE, Debuggers,...)
 - Interoperation between multiple DSLs is very difficult

- Purely embedded DSLs ⇒ “just a library”
 - Easy to develop (can reuse full host language)
 - Easier to learn DSL
 - Can Combine multiple DSLs in one program
 - Can Share DSL infrastructure among several DSLs
 - Hard to optimize using domain knowledge
 - Target same architecture as host language

Need to do better
Need to Do Better

- **Goal:** Develop embedded DSLs that perform as well as stand-alone ones

- **Intuition:** General-purpose languages should be designed with DSL embedding in mind

- Can we make this intuition more tangible?

- “Language Virtualization for Heterogeneous Parallel Computing”
 - Onward 2010, Reno

 - Collaboration with LAMP Group at EPFL
Embedded DSL gets it all for free, but can't change any of it.

Lightweight Modular Staging Approach

- Modular Staging provides a hybrid approach
- DSLs adopt front-end from highly expressive embedding languages
- Stand-alone DSL implements everything
- Can customize IR and participate in backend phases

Typical Compiler

GPCE’10: Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs
Intermediate Representation (IR)

- Scala higher-kindred types allow flexibility in both behavior and representation
- Automatically convert (lift) to this abstract representation
- Use this abstraction to build program representation (IR)
- Analyze and optimize this extensible representation for a variety of targets
Delite: A DSL Parallelization Infrastructure

- Provide a common IR that can be extended while still benefitting from generic analysis and opt.
- Extend common IR and provide IR nodes that encode data parallel execution patterns
 - Now can do parallel optimizations and mapping
- DSL extends most appropriate data parallel nodes for their operations
 - Now can do domain-specific analysis and opt.
- Generate a task graph, kernels and data structures
Delite: A DSL Implementation Framework

- Delite provides a common infrastructure for automatically exploiting implicit task and data parallelism
 - DSL IR nodes extend Delite OPs
 - OP archetypes simplify exposing data-parallelism within an operation (e.g., map, zip, reduce, scan)
 - IR converted to static task graph and submitted to the runtime

- Provides code generation facilities for many common targets
 - e.g., JVM (Scala), native (C++), GPUs (CUDA)
 - Each OP kernel and data structure is generated for all desired targets
Delite: A Heterogeneous Parallel Runtime

- Delite runtime accepts task graph, generated kernels, and generated data structures as inputs

- Performs static and dynamic scheduling of the task graph
 - Maps the task graph onto the hardware of the current machine
 - Makes device decisions based on available generated code for each kernel and locality optimizations
 - Calls back into code generation module post-scheduling to perform OP kernel fusion

- Manages all data movement and injects synchronization exactly where necessary
 - Manages data decomposition for data parallel operations
OptiML: A DSL for Machine Learning

- Learning patterns from data
 - Regression
 - Classification (e.g. SVMs)
 - Clustering (e.g. K-Means)
 - Density estimation (e.g. Expectation Maximization)
 - Inference (e.g. Loopy Belief Propagation)
 - Adaptive (e.g. Reinforcement Learning)

Report Spam
Why Machine Learning

- A good domain for studying parallelism
 - Many applications and datasets are time-bound in practice
 - A combination of regular and irregular parallelism at varying granularities
 - At the core of many emerging applications (speech recognition, robotic control, data mining etc.)
OptiML Language Features

- **Implicitly parallel data structures**
 - General linear algebra data types: Vector[T], Matrix[T]
 - Independent from the underlying implementation
 - Special data types: TrainingSet, TestSet, IndexVector, Image, Video
 - Encode semantic information

- **Implicitly parallel control structures**
 - Sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }
 - Encode restricted semantics within passed in code block

- **Domain specific optimizations**
 - Trade off a small amount accuracy for a large amount of performance
 - Relaxed dependencies
 - Best effort computing
Gaussian Discriminant Analysis

```scala
// x : TrainingSet[Double]
// mu0, mu1 : Vector[Double]
val sigma = sum(0,x.numSamples) {
  if (x.labels(_) == false)
    (x(_)-mu0).trans.outer(x(_)-mu0)
  else
    (x(_)-mu1).trans.outer(x(_)-mu1)
}
```

- ML-specific data types
- Parallel Control structures
- Restricted index semantics
Performance Study (CPU)

- GDA
- Naive Bayes
- K-means
- SVM
- LBP
- RBM

OptiML on DELITE Explicitly Parallelized MATLAB
Performance Study (GPU)

Normalized Speedup

- GDA
- RBM
- SVM
- KM
- NB
- LBP
Domain Specific Optimizations

- Best Effort Computation
- Relaxed Dependencies

Normalized Execution Time

- K-means
- Best-effort (1.2% error)
- Best-effort (4.2% error)
- Best-effort (7.4% error)

- SVM
- Relaxed SVM (+1% error)
Liszt: A DSL for PDEs

- Solvers for mesh-based PDEs
- Complex physical systems
- Huge domains
 - millions of cells
- Example: Unstructured Reynolds-averaged Navier Stokes (RANS) solver
Liszt Language Features

- Built-in mesh interface for arbitrary polyhedra
 - Vertex, Edge, Face, Cell

- Collections of mesh elements
 - Element Sets: faces(c:Cell), edgesCCW(f:Face)

- Mesh-based data storage
 - Fields: val vert_position = position(v)

- Parallelizable iteration
 - forall statements: for(f <- faces(cell)) { … }
Liszt Code Example

```scala
for (edge <- edges(mesh)) {
  val flux = flux_calc(edge)
  val v0 = head(edge)
  val v1 = tail(edge)
  Flux(v0) += flux
  Flux(v1) -= flux
}
```

Simple Set Comprehension
Functions, Function Calls
Mesh Topology Operators
Field Data Storage

Code contains possible write conflicts!

We use architecture specific strategies guided by domain knowledge
- **MPI**: Ghost cell-based message passing
- **GPU**: Coloring-based use of shared memory
Using 8 cores per node, scaling up to 96 cores (12 nodes, 8 cores per node, all communication using MPI)
GPU Performance

- Scaling mesh size from 50k (unit-sized) cells to 750k (16x) on a Tesla C2050. Comparison is against single threaded runtime on host CPU (Core 2 Quad 2.66Ghz)

Single-Precision: **31.5x**, Double-precision: **28x**
Conclusions

- DSLs can be an answer to the heterogeneous parallel programming problem

- Need to simplify the process of generating DSLs for parallelism
 - Need programming languages to be designed for flexible embedding
 - Lightweight modular staging in Scala allows for more powerful embedded DSLs
 - Delite provides a framework for adding parallelism

- Early embedded DSL results are very promising
Achieving Virtualization: Expressiveness

- OOP allowed higher level of abstractions
 - Add your own types and define operations on them
 - But how about custom type interaction with language features

- Overload all relevant embedding language constructs

```java
for (x <- elems if x % 2 == 0) p(x)
```

maps to

```java
elems.withFilter(x => x % 2 == 0).foreach(x => p(x))
```

- DSL developer can control how loops over domain collection should be represented and executed by implementing withFilter and foreach for their DSL type
Achieving Virtualization: Expressiveness

- For full virtualization, need to apply similar techniques to all other relevant constructs of the embedding language (for example)

```plaintext
if (cond) something else somethingElse
```

maps to

```plaintext
__ifThenElse(cond, something, somethingElse)
```

- DSL developer can control the meaning of conditionals by providing overloaded variants specialized to DSL types
trait TestMatrix {

 def example(a: Matrix, b: Matrix, c: Matrix, d: Matrix) = {
 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 }
}

\[a*b + a*c + a*c + a*d = a \times (b + c + c + c + d) \]
trait TestMatrix {
 this: MatrixArith =>

 def example(a: Rep[Matrix], b: Rep[Matrix],
 c: Rep[Matrix], d: Rep[Matrix]) = {
 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 }
}

- Rep[Matrix]: abstract type constructor ⇒ range of possible implementations of Matrix
- Operations on Rep[Matrix] defined in MatrixArith trait
Lifting Matrix to Abstract Representation

- DSL interface building blocks structured as traits
 - Expressions of type Rep[T] represent expressions of type T
 - Can plug in different representation
- Need to be able to convert (lift) Matrix to abstract representation
- Need to define an interface for our DSL type

```scala
trait MatrixArith {
  type Rep[T]

  implicit def liftMatrixToRep(x: Matrix): Rep[Matrix]

  def infix_+(x: Rep[Matrix], y: Rep[Matrix]): Rep[Matrix]
  def infix_*(x: Rep[Matrix], y: Rep[Matrix]): Rep[Matrix]
}
```

- Now can plugin different implementations and representations for the DSL
Start with common IR structure to be shared among DSLs

```scala
trait Expressions {
  // constants/symbols (atomic)
  abstract class Exp[T]
  case class Const[T](x: T) extends Exp[T]
  case class Sym[T](n: Int) extends Exp[T]

  // operations (composite, defined in subtraits)
  abstract class Op[T]

  // additional members for managing encountered definitions
  def findOrCreateDefinition[T](op: Op[T]): Sym[T]

  implicit def toExp[T](d: Op[T]): Exp[T] = findOrCreateDefinition(d)
}
```

Generic optimizations (e.g. common subexpression and dead code elimination) handled once and for all
Customize IR with Domain Info

- Choose Exp as representation for the DSL types
- Define Lifting function to create expressions
- Extend generic IR with domain-specific node types
- DSL methods build IR as program runs

```scala
trait MatrixArithRepExp extends MatrixArith with Expressions {
  type Rep[T] = Exp[T]

  implicit def liftMatrixToRep(x: Matrix) = Const(x)

  case class Plus(x: Exp[Matrix], y: Exp[Matrix]) extends Op[Matrix]
  case class Times(x: Exp[Matrix], y: Exp[Matrix]) extends Op[Matrix]

  def infix_+(x: Exp[Matrix], y: Exp[Matrix]) = Plus(x, y)
  def infix_*(x: Exp[Matrix], y: Exp[Matrix]) = Times(x, y)
}
```
DSL Optimization

- Use domain-specific knowledge to make optimizations in a modular fashion

```
trait MatrixArithRepExpOpt extends MatrixArithRepExp {
  override def infix_+(x: Exp[Matrix], y: Exp[Matrix]) = (x, y) match {
    case (Times(a, b), Times(c, d)) if (a == c) => infix_*(a, infix_+(b, d))
    case _ => super.plus(x, y)
  }
}
```

- Override IR node creation
- Construct Optimized IR nodes if possible
- Construct default otherwise

- Rewrite rules are simple, yet powerful optimization mechanism
- Access to the full domain specific IR allows for application of much more complex optimizations