Enhancing the Performance of Assisted Execution Runtime Systems
Gokcen Kestor, Roberto Gioiosa, Osman Unsal, Adrian Cristal, Mateo Valero

Motivation

- Amdahl's Laws limits the maximum theoretical speedup achieved by a parallel application
- Extra computing elements can be used to increase single thread performance (Assisted-Execution model)

Test case: STM^2

- Parallel software TM
- Uses additional auxiliary threads (AxTs) to offload TM operations
- Application threads (ATs) perform computation, TM operations handled by AxTs

In this scenario,
- ATs issue transactional operations at a low rate, thus AxTs are frequently idle
- AxTs "wastes" hardware resources without doing any process

Load imbalance inside transactions

Happens when one or more tasks in a parallel application have more work to perform than the others.

- Overloaded Application Threads:
 - AxT is idle, spinning on the communication channel for incoming messages
 - AxT priority can be reduced without performance loss

- Overloaded Auxiliary Threads:
 - ATs is idle, waiting for its corresponding AxT at commit phase
 - AxT priority can be increased to reduce AT waiting time

Overloaded ATs

- If #local accesses is limited, reducing AxTs priority reverses the imbalance
- If not, an overall performance improvement of 35%

Overloaded AxTs

- If the validation is frequent, better to increase AxT priority for txs
- If not, increasing AxT priority for txs is dangerous
- Reducing AT priority at commit phase is safe

Integrated Fine-Grained Resource Partitioning

We explore static techniques applied at compile time to maximize the effective use of hardware resources through IBM POWER7 hardware thread prioritization:

1) Embarrassingly parallel phases: Auxiliary threads are idle

2) Load imbalance inside transactions: Applications/Auxiliary threads are overloaded

Conclusions and Future Work

Fine-grained resource allocation is crucial for assisted execution systems
- Improves the performance
- Increases the utilization of system
- Uses available resources more effectively

However, static fine-grained resource allocation is not trivial at all:
- Prioritize AT or AxT, depending on the transaction's structure
- Need to set the right priority value of difference between AT and AxT

Need a fully automated approach to dynamically Partitioning the hardware resources between AT and AxT