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Motivation

 Data generation growing at an exponential rate

 Increasing demand to summarise/aggregate data quickly

 Since ~2005, frequency scaling no longer viable

 Explicit forms of parallelism must be used

 Data-level parallelism (DLP) is excellent when available

 Vector SIMD ISAs are highly efficient

 Compact representation – Implicit parallelism  – Scalable 

 Energy-efficient hardware implementations

 Vector SIMD ISA perfect when DLP is regular

 Many algorithms need transformations to be regular

 Transformations often hurt performance
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Contributions

 We examine applicability of vector SIMD to aggregations

 Propose and evaluate different algorithms

1. With transformations to use typical vector instructions

2. Vectorise directly using our novel vector instructions

 Evaluate with many datasets

 Five unique distributions 

 Twenty-two cardinalities

 Speedups between 2.7x and 7.6x over scalar baseline
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 This work is an extension to our HPCA-21 article
– VSR Sort: A Novel Vectorised Sorting Algorithm. (2015) Hayes et al.

 I will skip many things due to time constraints
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What is a Data Aggregation?

 Frequently occurring operation found in

 SQL GROUP BY queries

 MapReduce

 Statistical Languages

 OLAP Cubes

 Reduction of key-value pairs

 Aggregation function, e.g.

 SUM

 MINIMUM

 MAXIMUM

 AVERAGE
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Query and Algorithms

 Scalar baseline – no vector instructions

 Regular DLP – Typical vector instructions

A. Polytable

B. Standard Sorted Reduce [not in presentation]

 Irregular DLP – Novel vector instructions

A. Advanced Sorted Reduce

B. Monotable

C. Partially Sorted Monotable
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SELECT key, COUNT(*), SUM(value)

FROM table GROUP BY key
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Datasets: Five Distributions

1. Uniform

2. Sorted

3. Sequential

4. Heavy Hitter

5. Zipfian
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Datasets: Cardinalities

 Number of unique keys within dataset, e.g.

 N = 10,000,000

 C = 4  10,000,000

 Grouped into four cardinality divisions
1. Low cardinalities – many repeated keys

2. Low-normal cardinalities

3. High-normal cardinalities

4. High cardinalities – many unique keys
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Simulation Framework

 Custom Simulation Framework

 PTLsim – 32 nm Westmere microarchitecture

 DRAMSim2 – DDR3-1333

 Extended vector SIMD support

 Heavily influenced from classical vector machines, e.g. CRAY-1

 Emphasis on integer operations

 16x vector registers with 64x 64bit elements

 Pipelined functional units with 4x lockstepped parallel lanes

 Masked operations

 Indexed memory operations, i.e. gather/scatter

 Integrated in out-of-order superscalar pipeline
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Scalar Baseline

Future Vector Microprocessor Extensions for Data Aggregations

1 5 5 3

27 19 43 31

0

0

0

0

0

keys

values

table

1

2

3

4

5

13

31



Scalar Baseline – Results
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Polytable
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Polytable
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Polytable – Results
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Sorted Reduce
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 Our new sorting algorithm from HPCA-21

 Based on vectorised radix sort

 Uses novel vector SIMD instructions

 Avoids gather-modify-scatter conflicts

 Vector Prior Instances (VPI)
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Sorted Reduce
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Sorted Reduce
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sort
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Sorted Reduce – Results
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Monotable

 The Polytable algorithm needs to replicate tables 

 Avoids gather-modify-scatter conflicts

 Hurts performance

 The Sorted Reduce algorithm uses VSR Sort

 VSR Sort uses VPI to resolve gather-modify-scatter conflicts

 Could VPI also be used to optimise Polytable?

 VPI is not sufficient, but…

 Hardware could be reused

 Create similar-style but different instruction

 Vector Group Aggregate: SUM (VGAsum)

 Similar to VPI but uses second vector of values

 Vectorise scalar baseline without transformations
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Monotable
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Monotable – Results
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Partially Sorted Monotable

 Losing locality hurts performance

 Fully sorting can have a high overhead

 VSR Sort has O(k.n) complexity

 If we reduce the ‘k’, we reduce the overhead

92,345

0001,0110,1000,1011,1001
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Ignore LSBssort on MSBs (partition)

k bits

key
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Partially Sorted Monotable – Results
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Summary – Best Speedups Overall
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2.7x

7.6x
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Summary – Best Speedups Overall
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Conclusions

 Aggregating data quickly is important

 DLP & SIMD is an attractive way to accelerate it

 Aggregation algorithms are simple but DLP is irregular

 We proposed various algorithms

A. Use transformations and typical vector SIMD instructions

B. Avoid transformations using our novel vector instructions

 Evaluated using many data distributions and cardinalities

 Speedups between 2.7x and 7.6x over scalar baseline

 Best solution is dependent on input characteristics
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