
Timothy Hayes, Oscar Palomar,

Osman Unsal, Adrian Cristal, Mateo Valero

FUTURE VECTOR MICROPROCESSOR

EXTENSIONS FOR DATA AGGREGATIONS

ISCA-43 (2016)

timothy.hayes@bsc.es

Motivation

 Data generation growing at an exponential rate

 Increasing demand to summarise/aggregate data quickly

 Since ~2005, frequency scaling no longer viable

 Explicit forms of parallelism must be used

 Data-level parallelism (DLP) is excellent when available

 Vector SIMD ISAs are highly efficient

 Compact representation – Implicit parallelism – Scalable

 Energy-efficient hardware implementations

 Vector SIMD ISA perfect when DLP is regular

 Many algorithms need transformations to be regular

 Transformations often hurt performance

Future Vector Microprocessor Extensions for Data Aggregations2

Contributions

 We examine applicability of vector SIMD to aggregations

 Propose and evaluate different algorithms

1. With transformations to use typical vector instructions

2. Vectorise directly using our novel vector instructions

 Evaluate with many datasets

 Five unique distributions

 Twenty-two cardinalities

 Speedups between 2.7x and 7.6x over scalar baseline

Future Vector Microprocessor Extensions for Data Aggregations

 This work is an extension to our HPCA-21 article
– VSR Sort: A Novel Vectorised Sorting Algorithm. (2015) Hayes et al.

 I will skip many things due to time constraints

3

Presentation Contents

I. Motivation

II. What is Data Aggregation?

III. Experimental Setup

IV. Algorithms

1. Scalar Baseline

2. Polytable

3. Sorted Reduce

4. Monotable

5. Partially Sorted Monotable

6. Summary

V. Conclusions

Future Vector Microprocessor Extensions for Data Aggregations4

What is a Data Aggregation?

 Frequently occurring operation found in

 SQL GROUP BY queries

 MapReduce

 Statistical Languages

 OLAP Cubes

 Reduction of key-value pairs

 Aggregation function, e.g.

 SUM

 MINIMUM

 MAXIMUM

 AVERAGE

Future Vector Microprocessor Extensions for Data Aggregations5

7 5 13 25 85 33 9 44

va
lu

e
s

0 1 3 2 2 0 3 1ke
ys

40+

What is a Data Aggregation?

Future Vector Microprocessor Extensions for Data Aggregations6

49+ 110+ 22+

Presentation Contents

I. Motivation

II. What is Data Aggregation?

III. Experimental Setup

IV. Algorithms

1. Scalar Baseline

2. Polytable

3. Sorted Reduce

4. Monotable

5. Partially Sorted Monotable

6. Summary

V. Conclusions

Future Vector Microprocessor Extensions for Data Aggregations7

Query and Algorithms

 Scalar baseline – no vector instructions

 Regular DLP – Typical vector instructions

A. Polytable

B. Standard Sorted Reduce [not in presentation]

 Irregular DLP – Novel vector instructions

A. Advanced Sorted Reduce

B. Monotable

C. Partially Sorted Monotable

Future Vector Microprocessor Extensions for Data Aggregations

SELECT key, COUNT(*), SUM(value)

FROM table GROUP BY key

8

Datasets: Five Distributions

1. Uniform

2. Sorted

3. Sequential

4. Heavy Hitter

5. Zipfian

Future Vector Microprocessor Extensions for Data Aggregations9

4 8 2 3 6 7 4 4 1 6 6 7 1 5 2 4 8 1 3 1 2 2 3 3 7 8 5 5 7 6 5 8

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

3 8 2 3 6 7 3 4 1 3 6 3 3 5 3 4 8 3 3 1 3 2 3 3 7 3 3 5 7 3 5 8

6 8 4 3 2 1 2 2 3 4 8 7 6 1 2 7 3 1 2 5 4 1 5 1 3 1 1 1 1 2 1 5

Datasets: Cardinalities

 Number of unique keys within dataset, e.g.

 N = 10,000,000

 C = 4 10,000,000

 Grouped into four cardinality divisions
1. Low cardinalities – many repeated keys

2. Low-normal cardinalities

3. High-normal cardinalities

4. High cardinalities – many unique keys

Future Vector Microprocessor Extensions for Data Aggregations10

N=8, C=11 1 1 1 1 1 1 1

N=8, C=21 1 2 1 2 2 2 1

N=8, C=42 1 1 3 4 2 4 1

N=8, C=83 2 8 5 4 6 1 7

Simulation Framework

 Custom Simulation Framework

 PTLsim – 32 nm Westmere microarchitecture

 DRAMSim2 – DDR3-1333

 Extended vector SIMD support

 Heavily influenced from classical vector machines, e.g. CRAY-1

 Emphasis on integer operations

 16x vector registers with 64x 64bit elements

 Pipelined functional units with 4x lockstepped parallel lanes

 Masked operations

 Indexed memory operations, i.e. gather/scatter

 Integrated in out-of-order superscalar pipeline

Future Vector Microprocessor Extensions for Data Aggregations11

Presentation Contents

I. Motivation

II. What is Data Aggregation?

III. Experimental Setup

IV. Algorithms

1. Scalar Baseline

2. Polytable

3. Sorted Reduce

4. Monotable

5. Partially Sorted Monotable

6. Summary

V. Conclusions

Future Vector Microprocessor Extensions for Data Aggregations12

Scalar Baseline

Future Vector Microprocessor Extensions for Data Aggregations

1 5 5 3

27 19 43 31

0

0

0

0

0

keys

values

table

1

2

3

4

5

13

31

Scalar Baseline – Results

0

15

30

45

60

75

90

105

120

135

4 9

19 38 76

15
2

30
5

61
0

1,
2
2
0

2,
4
41

4,
8
82

9,
7
65

1
9
,5
3
1

39
,0
6
2

7
8
,1
2
5

15
6
,2
50

31
2
,5
00

62
5
,0
00

1,
2
5
0
,0
0
0

2,
5
00
,0
0
0

5,
0
00
,0
0
0

10
,0
0
0,
0
00

low low-normal high-normal high

cy
cl

e
s

p
e

r
tu

p
le

uniform sorted sequential hhitter zipf

Future Vector Microprocessor Extensions for Data Aggregations14

Presentation Contents

I. Motivation

II. What is Data Aggregation?

III. Experimental Setup

IV. Algorithms

1. Scalar Baseline

2. Polytable

3. Sorted Reduce

4. Monotable

5. Partially Sorted Monotable

6. Summary

V. Conclusions

Future Vector Microprocessor Extensions for Data Aggregations15

Polytable

Future Vector Microprocessor Extensions for Data Aggregations

1 5 5 3

27 19 43 31

0

0

0

0

0

keys

values

table

1

2

3

4

5

16

process m key-values

gather-modify-scatter conflict

Polytable

Future Vector Microprocessor Extensions for Data Aggregations

0

0

0

0

0

m local tables

1

2

3

4

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

17

1 5 5 3

27 19 43 31

keys

values

✓31

43 19

27

Polytable – Results

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

cy
cl

e
s

p
e

r
tu

p
le

uniform sorted sequential hhitter zipf

scalar

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

cy
cl

e
s

p
e

r
tu

p
le

uniform sorted sequential hhitter zipf

polytable

Future Vector Microprocessor Extensions for Data Aggregations18

Presentation Contents

I. Motivation

II. What is Data Aggregation?

III. Experimental Setup

IV. Algorithms

1. Scalar Baseline

2. Polytable

3. Sorted Reduce

4. Monotable

5. Partially Sorted Monotable

6. Summary

V. Conclusions

Future Vector Microprocessor Extensions for Data Aggregations19

Sorted Reduce

Future Vector Microprocessor Extensions for Data Aggregations

5 1 5 3

27 19 43 31

keys

values

 Our new sorting algorithm from HPCA-21

 Based on vectorised radix sort

 Uses novel vector SIMD instructions

 Avoids gather-modify-scatter conflicts

 Vector Prior Instances (VPI)

20

Sorted Reduce

Future Vector Microprocessor Extensions for Data Aggregations21

in
p

u
t

o
u

tp
u

t

2 2 3 1

0 1 0 0

least significant element

most significant element

5 1 5 3

27 19 43 31

keys

values

VPI

Sorted Reduce

Future Vector Microprocessor Extensions for Data Aggregations

sort

22

output

5 1 5 3

27 19 43 31

keys

values

1 + reduce

3 + reduce

5 + reduce

5 5 3 1

27 43 31 19

19

31

70

Sorted Reduce – Results

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

cy
cl

e
s

p
e

r
tu

p
le

uniform sorted sequential hhitter zipf

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

cy
cl

e
s

p
e

r
tu

p
le

uniform sorted sequential hhitter zipf

scalar advanced sorted reduce

Future Vector Microprocessor Extensions for Data Aggregations23

Presentation Contents

I. Motivation

II. What is Data Aggregation?

III. Experimental Setup

IV. Algorithms

1. Scalar Baseline

2. Polytable

3. Sorted Reduce

4. Monotable

5. Partially Sorted Monotable

6. Summary

V. Conclusions

Future Vector Microprocessor Extensions for Data Aggregations24

Monotable

 The Polytable algorithm needs to replicate tables

 Avoids gather-modify-scatter conflicts

 Hurts performance

 The Sorted Reduce algorithm uses VSR Sort

 VSR Sort uses VPI to resolve gather-modify-scatter conflicts

 Could VPI also be used to optimise Polytable?

 VPI is not sufficient, but…

 Hardware could be reused

 Create similar-style but different instruction

 Vector Group Aggregate: SUM (VGAsum)

 Similar to VPI but uses second vector of values

 Vectorise scalar baseline without transformations

Future Vector Microprocessor Extensions for Data Aggregations25

Monotable

Future Vector Microprocessor Extensions for Data Aggregations26

v
a

lu
e

o
u

tp
u

t

6 12 3 5
k
e

y

2 0 2 2

VGAsum
most significant element

least significant element

6 12 9 14

Monotable – Results

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

cy
cl

e
s

p
e

r
tu

p
le

uniform sorted sequential hhitter zipf

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

cy
cl

e
s

p
e

r
tu

p
le

uniform sorted sequential hhitter zipf

scalar monotable

Future Vector Microprocessor Extensions for Data Aggregations27

Presentation Contents

I. Motivation

II. What is Data Aggregation?

III. Experimental Setup

IV. Algorithms

1. Scalar Baseline

2. Polytable

3. Sorted Reduce

4. Monotable

5. Partially Sorted Monotable

6. Summary

V. Conclusions

Future Vector Microprocessor Extensions for Data Aggregations28

Partially Sorted Monotable

 Losing locality hurts performance

 Fully sorting can have a high overhead

 VSR Sort has O(k.n) complexity

 If we reduce the ‘k’, we reduce the overhead

92,345

0001,0110,1000,1011,1001

Future Vector Microprocessor Extensions for Data Aggregations

Ignore LSBssort on MSBs (partition)

k bits

key

29

Partially Sorted Monotable – Results

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

cy
cl

e
s

p
e

r
tu

p
le

uniform sorted sequential hhitter zipf

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

cy
cl

e
s

p
e

r
tu

p
le

uniform sorted sequential hhitter zipf

scalar partially sorted monotable

Future Vector Microprocessor Extensions for Data Aggregations30

Presentation Contents

I. Motivation

II. What is Data Aggregation?

III. Experimental Setup

IV. Algorithms

1. Scalar Baseline

2. Polytable

3. Sorted Reduce

4. Monotable

5. Partially Sorted Monotable

6. Summary

V. Conclusions

Future Vector Microprocessor Extensions for Data Aggregations31

Summary – Best Speedups Overall

1

2

3

4

5

6

7

8

low low-normal high-normal high

av
er

ag
e

sp
ee

d
u

p
 o

ve
r

sc
al

ar

cardinality

uniform sorted sequential hhitter zipf

Future Vector Microprocessor Extensions for Data Aggregations

2.7x

7.6x

32

Summary – Best Speedups Overall

1

2

3

4

5

6

7

8

low low-normal high-normal high

av
er

ag
e

sp
ee

d
u

p
 o

ve
r

sc
al

ar

cardinality

uniform sorted sequential hhitter zipf
m

o
n

o

p
o

ly

m
o

n
o

m
o

n
o

m
o

n
o

m
o

n
o

p
o

ly

m
o

n
o

m
o

n
o

m
o

n
o

p
s-

m
o

n
o

so
r
te

d
 r

e
d

u
c
e

m
o

n
o

p
s-

m
o

n
o

p
s-

m
o

n
o

p
s-

m
o

n
o

m
o

n
o

m
o

n
o

p
s-

m
o

n
o

p
s-

m
o

n
o

Future Vector Microprocessor Extensions for Data Aggregations

2.7x

7.6x

33

Presentation Contents

I. Motivation

II. What is Data Aggregation?

III. Experimental Setup

IV. Algorithms

1. Scalar Baseline

2. Polytable

3. Sorted Reduce

4. Monotable

5. Partially Sorted Monotable

6. Summary

V. Conclusions

Future Vector Microprocessor Extensions for Data Aggregations34

Conclusions

 Aggregating data quickly is important

 DLP & SIMD is an attractive way to accelerate it

 Aggregation algorithms are simple but DLP is irregular

 We proposed various algorithms

A. Use transformations and typical vector SIMD instructions

B. Avoid transformations using our novel vector instructions

 Evaluated using many data distributions and cardinalities

 Speedups between 2.7x and 7.6x over scalar baseline

 Best solution is dependent on input characteristics

Future Vector Microprocessor Extensions for Data Aggregations35

