FUTURE VECTOR MICROPROCESSOR EXTENSIONS FOR DATA AGGREGATIONS

<u>Timothy Hayes</u>, Oscar Palomar, Osman Unsal, Adrian Cristal, Mateo Valero

timothy.hayes@bsc.es

- Data generation growing at an exponential rate
- Increasing demand to summarise/aggregate data quickly
- Since ~2005, frequency scaling no longer viable
- Explicit forms of parallelism must be used
- Data-level parallelism (DLP) is excellent when available
 - Vector SIMD ISAs are highly efficient
 - Compact representation Implicit parallelism Scalable
 - Energy-efficient hardware implementations
- Vector SIMD ISA perfect when DLP is <u>regular</u>
- Many algorithms need <u>transformations</u> to be regular
- Transformations often hurt performance

Contributions

- We examine applicability of vector SIMD to aggregations
- Propose and evaluate different algorithms
 - I. With transformations to use <u>typical</u> vector instructions
 - 2. Vectorise directly using our <u>novel</u> vector instructions
- Evaluate with many datasets
 - Five unique distributions
 - Twenty-two cardinalities
- Speedups between 2.7x and 7.6x over scalar baseline

- This work is an extension to our HPCA-21 article
 - VSR Sort: A Novel Vectorised Sorting Algorithm. (2015) Hayes et al.
- I will skip many things due to time constraints

I. Motivation

- II. What is Data Aggregation?
- III. Experimental Setup
- IV. Algorithms
 - I. Scalar Baseline
 - 2. Polytable
 - 3. Sorted Reduce
 - 4. Monotable
 - 5. Partially Sorted Monotable
 - 6. Summary
- v. Conclusions

What is a Data Aggregation?

Frequently occurring operation found in

- SQL GROUP BY queries
- Map<u>Reduce</u>
- Statistical Languages
- OLAP Cubes
- Reduction of key-value pairs
- Aggregation function, e.g.
 - SUM
 - MINIMUM
 - MAXIMUM
 - AVERAGE

What is a Data Aggregation?

Future Vector Microprocessor Extensions for Data Aggregations

I. Motivation

II. What is Data Aggregation?

III. Experimental Setup

- IV. Algorithms
 - I. Scalar Baseline
 - 2. Polytable
 - 3. Sorted Reduce
 - 4. Monotable
 - 5. Partially Sorted Monotable
 - 6. Summary
- v. Conclusions

SELECT key, COUNT(*), SUM(value)
FROM table GROUP BY key

- Scalar baseline no vector instructions
- Regular DLP Typical vector instructions
 - A. Polytable
 - B. Standard Sorted Reduce [not in presentation] A
- Irregular DLP Novel vector instructions
 - A. Advanced Sorted Reduce
 - B. Monotable
 - C. Partially Sorted Monotable

Datasets: Five Distributions

I. Uniform

2. Sorted

З Δ Δ Δ

3. Sequential

4. Heavy Hitter

5. Zipfian

Datasets: Cardinalities

Number of unique keys within dataset, e.g.

- ▶ N = 10,000,000
- $C = 4 \rightarrow 10,000,000$
- Grouped into four cardinality divisions
 - I. Low cardinalities many repeated keys
 - 2. Low-normal cardinalities
 - 3. High-normal cardinalities
 - 4. High cardinalities many unique keys

Simulation Framework

- Custom Simulation Framework
 - PTLsim 32 nm Westmere microarchitecture
 - DRAMSim2 DDR3-1333
- Extended vector SIMD support
 - Heavily influenced from classical vector machines, e.g. CRAY-I
 - Emphasis on integer operations
 - I 6x vector registers with 64x 64bit elements
 - Pipelined functional units with 4x lockstepped parallel lanes
 - Masked operations
 - Indexed memory operations, i.e. gather/scatter
 - Integrated in out-of-order superscalar pipeline

- I. Motivation
- II. What is Data Aggregation?
- III. Experimental Setup
- IV. Algorithms
 - I. Scalar Baseline
 - 2. Polytable
 - 3. Sorted Reduce
 - 4. Monotable
 - 5. Partially Sorted Monotable
 - 6. Summary
- v. Conclusions

Scalar Baseline

Future Vector Microprocessor Extensions for Data Aggregations

Scalar Baseline – Results

Future Vector Microprocessor Extensions for Data Aggregations

I. Motivation

- II. What is Data Aggregation?
- III. Experimental Setup

IV. Algorithms

I. Scalar Baseline

2. Polytable

- 3. Sorted Reduce
- 4. Monotable
- 5. Partially Sorted Monotable
- 6. Summary

v. Conclusions

Polytable

Polytable

Polytable – Results

Future Vector Microprocessor Extensions for Data Aggregations

I. Motivation

- II. What is Data Aggregation?
- III. Experimental Setup

IV. Algorithms

- I. Scalar Baseline
- 2. Polytable
- 3. Sorted Reduce
- 4. Monotable
- 5. Partially Sorted Monotable
- 6. Summary
- v. Conclusions

Sorted Reduce

- Our new sorting algorithm from HPCA-21
- Based on vectorised radix sort
- Uses novel vector SIMD instructions
- Avoids <u>gather-modify-scatter</u> conflicts
- Vector Prior Instances (VPI)

Sorted Reduce

Sorted Reduce

Sorted Reduce – Results

Future Vector Microprocessor Extensions for Data Aggregations

I. Motivation

- II. What is Data Aggregation?
- III. Experimental Setup

IV. Algorithms

- I. Scalar Baseline
- 2. Polytable
- 3. Sorted Reduce

4. Monotable

- 5. Partially Sorted Monotable
- 6. Summary

v. Conclusions

Monotable

- The Polytable algorithm needs to replicate tables
 - Avoids gather-modify-scatter conflicts
 - Hurts performance
- The Sorted Reduce algorithm uses VSR Sort
 - VSR Sort uses VPI to resolve <u>gather-modify-scatter</u> conflicts
 - Could VPI also be used to optimise Polytable?
- VPI is not sufficient, but...
 - Hardware could be reused
 - Create similar-style but different instruction
- Vector Group Aggregate: SUM (VGAsum)
 - Similar to VPI but uses second vector of values
 - Vectorise scalar baseline without transformations

Monotable

Monotable – Results

Future Vector Microprocessor Extensions for Data Aggregations

27

I. Motivation

- II. What is Data Aggregation?
- III. Experimental Setup

IV. Algorithms

- I. Scalar Baseline
- 2. Polytable
- 3. Sorted Reduce
- 4. Monotable

5. Partially Sorted Monotable

6. Summary

v. Conclusions

Partially Sorted Monotable

- Losing locality hurts performance
- Fully sorting can have a high overhead
- VSR Sort has O(k.n) complexity
- If we reduce the 'k', we reduce the overhead

Partially Sorted Monotable - Results

Future Vector Microprocessor Extensions for Data Aggregations

I. Motivation

- II. What is Data Aggregation?
- III. Experimental Setup

IV. Algorithms

- I. Scalar Baseline
- 2. Polytable
- 3. Sorted Reduce
- 4. Monotable
- 5. Partially Sorted Monotable
- 6. Summary

v. Conclusions

Summary – Best Speedups Overall

Summary – Best Speedups Overall

Future Vector Microprocessor Extensions for Data Aggregations

- I. Motivation
- II. What is Data Aggregation?
- III. Experimental Setup
- IV. Algorithms
 - I. Scalar Baseline
 - 2. Polytable
 - 3. Sorted Reduce
 - 4. Monotable
 - 5. Partially Sorted Monotable
 - 6. Summary

v. Conclusions

Conclusions

- Aggregating data quickly is important
- DLP & SIMD is an attractive way to accelerate it
- Aggregation algorithms are simple but DLP is irregular
- We proposed various algorithms
 - A. Use transformations and typical vector SIMD instructions
 - B. Avoid transformations using our novel vector instructions
- Evaluated using many data distributions and cardinalities
- Speedups between 2.7x and 7.6x over scalar baseline
- Best solution is dependent on input characteristics