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Motivation

Data generation growing at an exponential rate
Increasing demand to summarise/aggregate data quickly
Since ~2005, frequency scaling no longer viable

Explicit forms of parallelism must be used

Data-level parallelism (DLP) is excellent when available
» Vector SIMD ISAs are highly efficient
» Compact representation — Implicit parallelism — Scalable

» Energy-efficient hardware implementations
Vector SIMD ISA perfect when DLP is regular
Many algorithms need transformations to be regular

Transformations often hurt performance
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Contributions

We examine applicability of vector SIMD to aggregations

Propose and evaluate different algorithms

I. With transformations to use typical vector instructions
2. Vectorise directly using our novel vector instructions
Evaluate with many datasets

» Five unique distributions

» Twenty-two cardinalities

Speedups between 2.7x and 7.6x over scalar baseline

This work is an extension to our HPCA-21 article
— VSR Sort:A Novel Vectorised Sorting Algorithm. (2015) Hayes et al.

| will skip many things due to time constraints
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What is a Data Aggregation?

» Frequently occurring operation found in
» SQL GROUP BY queries
» MapReduce

» Statistical Languages
» OLAP Cubes

» Reduction of key-value pairs

» Aggregation function, e.g.
» SUM
» MINIMUM
» MAXIMUM
» AVERAGE
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What is a Data Aggregation?

keys  values
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Query and Algorithms

SELECT key, COUNT(*), SUM(value)
FROM table GROUP BY key

» Scalar baseline — no vector instructions

» Regular DLP — Typical vector instructions
A. Polytable
B. Standard Sorted Reduce [not in presentation] A\

» Irregular DLP — Novel vector instructions
A. Advanced Sorted Reduce
B. Monotable
C. Partially Sorted Monotable
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Datasets: Five Distributions

Uniform

a8l 2[3]e6f[7]alalaf6]el7]s1[s]2]afB]a[s[a]2]2][s[3]7[8]s[s[7][e6]s[8]

Sorted

lalafafalafof2]2fs[s[3[3fafalalafs[s[s[s[elef[ef[e]z[7][7]7[8]a]a]s]

Sequential

l2]2]3fafs[efz[8fa1]2[3]a[s|ef[7]8]1]2[3[]als[e[7]8]1[2]3[als[6]7][8]

Heavy Hitter

[3[8f2]s[e[7[3]afa]3[6]3[3[s[3]afB]3[s[a]s[2]3[3[7[3][3[s[7[3][5][8]

Zipfian

lel8]alsf2]af2]o[3]afBl7fe]a[2]7]s[af2]5]afafsf[afsfafafafaf2]a]5]
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Datasets: Cardinalities

Number of unique keys within dataset, e.g.

1111|1121 ]1]1 <« N=8, C=|
1|1 |22 |2]|2]|2]1 <« N=8, C=2
21134 2]4a]1 «— N=8, C=4
3|2|8|5|4|]6|1]7 <« N=8, C=8

N = 10,000,000
C =4 - 10,000,000

Grouped into four cardinality divisions

I.  Low cardinalities — many repeated keys
2. Low-normal cardinalities

3. High-normal cardinalities

4. High cardinalities — many unique keys
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Simulation Framework

» Custom Simulation Framework

» PTLsim — 32 nm Westmere microarchitecture
» DRAMSIim2 — DDR3-1333

» Extended vector SIMD support

Heavily influenced from classical vector machines, e.g. CRAY-|
Emphasis on integer operations

| 6x vector registers with 64x 64bit elements

Pipelined functional units with 4x lockstepped parallel lanes
Masked operations

Indexed memory operations, i.e. gather/scatter

vV Vv Vv VvV Vv Vv v

Integrated in out-of-order superscalar pipeline
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Scalar Baseline

table
keys | | | 5| 5| 3 |- 0 |
alves (2719 |43 |31 0 |2
I 31 | 3 gn
0 4
0 5
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cycles per tuple

Scalar Baseline — Results
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Polytable

rocess S
W‘a\ table

keys| | 1]l 5| 5 (|3 [ 0 I

vaues| [ 27 | | 4& 3

gather-modify-scatter conflict
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Polytable

keys

values

5153
| |
27 | 19 43 | 31

0
0|0 o0]p

31 | 0 | 00
0 [o<0 | 0
4319 o
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Polytable — Results

scalar polytable
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Sorted Reduce

keys 5 | 5 3

values |27 (1943 | 31

Our new sorting algorithm from HPCA-21
Based on vectorised radix sort

Avoids gather-modify-scatter conflicts
Vector Prior Instances (VPI)

4
4
» Uses novel vector SIMD instructions
4
4
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Sorted Reduce

keys 5 | 5 3

values |27 (1943 | 31

least significant element

most significant element

Input
N
N
w
(o

output
o
o
o
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Sorted Reduce

keys | + reduce

3 + reduce
values

5 + reduce

b 22 Future Vector Microprocessor Extensions for Data Aggregations



cycles per tuple

Sorted Reduce — Results

advanced sorted reduce
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Monotable

» The Polytable algorithm needs to replicate tables
» Avoids gather-modify-scatter conflicts

» Hurts performance

» The Sorted Reduce algorithm uses VSR Sort
» VSR Sort uses VPI to resolve gather-modify-scatter conflicts
» CouldVPI also be used to optimise Polytable?
» VPl is not sufficient, but...
» Hardware could be reused
» Create similar-style but different instruction

» Vector Group Aggregate: SUM (VGAsum)

» Similar to VPI but uses second vector of values
» Vectorise scalar baseline without transformations
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Monotable

least significant element

most significant element
VGAsum /

g2|10f2]2
sl 6 12| 3|5
§‘6 12 9 | 14
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Monotable — Results

cycles per tuple

scalar monotable
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Partially Sorted Monotable

» Losing locality hurts performance
» Fully sorting can have a high overhead
» VSR Sort has O(k.n) complexity

» If we reduce the ‘k’, we reduce the overhead

k bits

sort on MSBs (partition) \ lgnore LSBs
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Partially Sorted Monotable — Results

scalar partially sorted monotable
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Summary — Best Speedups Overall

7.6x Wuniform M@sorted Msequential W hhitter M zipf
3 y
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Summary — Best Speedups Overall
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Conclusions

Aggregating data quickly is important

DLP & SIMD is an attractive way to accelerate it
Aggregation algorithms are simple but DLP is irregular
We proposed various algorithms

A. Use transformations and typical vector SIMD instructions

B. Avoid transformations using our novel vector instructions
Evaluated using many data distributions and cardinalities
Speedups between 2.7x and 7.6x over scalar baseline

Best solution is dependent on input characteristics
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