Vector Extensions for Decision Support DBMS Acceleration

Timothy Hayes, Oscar Palomar, Osman Unsal, Adrian Cristal & Mateo Valero

Barcelona Supercomputing Center

Presented by **Timothy Hayes**

timothy.hayes@bsc.es
Introduction

- Databases are important
 - OnLine Analytical Processing
 - Data mining
 - E-commerce
 - Scientific analysis

- Decision Support System DBMSs
 - Extracts useful information from large structured data
 - Frequent reads – infrequent updates
 - Moved from disk-bound to memory/CPU-bound
 - Abundance of analysis
 - Recent research on DBMS implementation – Zukowski et al (2006)

- Opportunity for computer architecture
 - Speedup queries in a power-efficient way
 - Data-level parallelism (DLP) is very attractive here if available
Vectorwise

- State of the art analytical database engine
 - Based on MonetDB/X100 – Boncz et al (2005)
 - Redesigned database software architecture
 - Highly optimised for modern commodity superscalar CPUs
 - Finding hotspots is relevant
 - Column-oriented / block at a time (batches of values)
 - Possible opportunities for data-level parallelism (DLP)

- Profiling
 - TPC-H decision support benchmark
 - 22 queries – 100 GB database
 - Intel Nehalem microarchitecture
Profiling Vectorwise w/ TPC-H 100 GB

The graph shows the cpu time (seconds) for each TPC-H query. The queries are divided into two categories: hash join and other. Query 9 is significantly more time-consuming than the others.
Hash Join Analysis

- 61% of total time
 - Build – 33% (20%)
 - Probe – 67% (41%)
- Poor ILP scalability
 - Simulated wide configs
 - Superscalar/OoO structs
 - Maximum speedup 1.21x
- Algorithm has DLP
 - Each probe independent
 - Why isn’t it vectorised?
DLP Support in Hardware

- SIMD multimedia extensions (SSE/AVX)
 - Register lengths relatively short
 - SIMD operations are fixed in length
 - Indexed memory operations missing*
 - Experiments show speedup of less than 1%

- Vectors: traditional pipelined solution
 - Solves many problems that SIMD suffers from
 - Long vector registers with pipelined operations
 - Programmable vector length
 - Mask registers for conditionals
 - Gather/scatter
 - Traditionally applied to scientific/multimedia domains
 - Opportunity to explore business-domain applications
Paper Contributions

- Show that a vectors can be reapplied to DSS workloads
- Extend modern out-of-order x86-64 microprocessor
 - Provide suitable vector ISA extensions
 - Optimise implementation for DSS workload
- Experimental evaluation
 1. Demonstrate that vectors are beneficial
 2. Design space exploration
 3. Memory bandwidth analysis
 4. Prefetching support
Vector Extensions to x86-64

- Vector Instruction Set
 - Traditional instructions
 - Vectorises hash join
 - But not overly specific
 - Integer over floating point
- Classes
 - Arithmetic / Logical
 - Compress
 - Optional Mask
 - Mask Arithmetic
 - Programmable Vector Length
 - Mem. Unit Stride / Indexed

- Architecture
 - 8 vector registers
 - Size discussed later
 - 4 mask registers
 - 1 vector length register

- Microarchitecture
 - Adds 3 new vector clusters
 - 2 arithmetic - 1 memory
 - Tightly integrated with core
 - Not a coprocessor
 - Reuse existing structures
 - Cache integration difficult
 - OoO difficult
Cache Hierarchy Integration

- Want to take advantage of the cache hierarchy
 - Vectorwise is blocked & cache-conscious
 - Sometimes datasets are cache-resident

- Vector integration should...
 - Not compromise the existing access time of the L1D cache
 - Provide enough bandwidth to vector unit
 - Exploit regular access patterns, i.e. unit stride

- Bypass L1D and go directly to L2
 - Quintana et al. (1999)
 - Pull many elements in a single request
 - Amortise extra latency incurred w/ long pipelined ops
Out of Order Execution

- Espasa et al. (1997) vectors with out of order execution
 - Performance benefits ✔
 - Hides memory latency even more ✔
 - Only supports unit-stride memory access ✗

- Very difficult for indexed accesses
 - Need to check for memory aliases
 - Gather/Scatter too complex for load/store queue (LSQ)

- Our proposal
 - Explicitly program fences between memory dependencies
 - Seldomly needed
 - Relax the memory model
 - Bypass the LSQ completely
 - Very simple hardware to track outstanding memory ops
Experimental Setup

- **Scalar Baseline**
 - Intel Nehalem 2.67 GHz
 - Single core
 - Inclusive Cache
 - L1i – 32 KB – 1 cycle
 - L1d – 32 KB – 4 cycles
 - L2 – 256 KB – 10 cycles

- **Memory System**
 - DDR3-1333
 - 10.667 GB/s bandwidth

- **Simulators**
 - PTLsim
 - DRAMSim2

- **Application**
 - Hand-vectorised

- **Datasets**
 1. L1 resident (l1r)
 2. L2 resident (l2r)
 3. 2 MB
 4. HUGE
 5. TPCH
Vector Benefits

Are vectors suitable for DSS acceleration?
Scalability of Vector Length

The graph illustrates the speedup over scalar with respect to the vector register length. Various benchmarks and scenarios are depicted:

- **l1r**: Least frequently used data in cache
- **l2r**: Frequently used data in cache
- **2mb**: Small memory benchmarks
- **huge**: Large memory benchmarks
- **tpch**: Transaction Processing benchmark

As the vector register length increases, the speedup also increases, indicating improved performance with larger vector lengths.
Design Exploration

Are the design decisions justified?
Design Exploration – MVL64

![Graph showing processor cycles for different datasets with bar heights representing cycle counts for various configurations.](image_url)
Memory Bandwidth

Can vectors utilise the available bandwidth?
Memory Bandwidth Utilisation

A graph showing the speedup over scalar versus vector register length. The graph has three lines:
- inf. bw
- mc2
- mcl

The y-axis represents speedup over scalar and the x-axis represents vector register length. The graph shows an increasing trend with increasing vector register length.
Memory Bandwidth / MSHRs – MVL64

The figure shows the speedup over scalar for different experiments with varying MSHRs. The experiments are labeled as follows:
- s-mc1
- s-mc2
- s-inf.bw
- v-mc1
- v-mc2
- v-inf.bw

The bars are color-coded as follows:
- mshr 1x
- mshr 2x
- mshr 4x

The x-axis represents the experiments, and the y-axis shows the speedup over scalar values.
Software Prefetching Support

Increasing the utilisation of available memory bandwidth
Prefetching Improvements – MVL64

The chart shows the speedup over scalar without prefetching for different datasets: l1r, l2r, 2mb, huge, and tpch. The speeds are compared between scalar (s-pre), vector without prefetching (v-no-pre), and vector with prefetching (v-pre).
Conclusions

- **Superscalar/OoO**
 - Does not offer good scalability for a DSS workload
 - Does not saturate available memory bandwidth
- **Vectors ideal for a DSS workload**
 - Speedup between $1.94x - 4.56x$ for 41% of benchmark
 - Fully saturates available memory bandwidth
 - Long vector operations
 - Potential to scale further
 - All with *pipelining* and not parallel lanes
- **Design Space Measurements**
 - Cache integration
 - Bypassing L1 cache does not incur a penalty
 - Out of order integration
 - Indexed memory support is challenging
 - $1.4x$ improvement
 - Future work will discover its cost in area/energy
Vector Extensions for Decision Support DBMS Acceleration

Timothy Hayes, Oscar Palomar, Osman Unsal, Adrian Cristal & Mateo Valero

Barcelona Supercomputing Center

Presented by Timothy Hayes
timothy.hayes@bsc.es