
SymptomTM: Symptom-Based Error Detection and
Recovery Using Hardware Transactional Memory

Gulay Yalcin∗, Osman S. Unsal∗, Adrian Cristal∗ †, Ibrahim Hur∗ and Mateo Valero∗
∗ Barcelona Supercomputing Center

† IIIA - Artificial Intelligence Research Institute - CSIC - Spanish National Research Council
Email: (gulay.yalcin, osman.unsal, adrian.cristal, ibrahim.hur, mateo.valero)@bsc.es

Abstract—Fault-tolerance has become an essential concern for
processor designers due to increasing transient and permanent
fault rates. In this study we propose SymptomTM, a symptom-
based error detection technique that recovers from errors by
leveraging the abort mechanism of Transactional Memory (TM).
To the best of our knowledge, this is the first architectural
fault-tolerance proposal using Hardware Transactional Mem-
ory (HTM). SymptomTM can recover from 86% and 65%
of catastrophic failures caused by transient and permanent
errors respectively with no performance overhead in error-free
executions.

I. INTRODUCTION

In addition to power and performance, reliability is becom-
ing a first-class design constraint for processor designers. Thus
it is important to develop simple (in terms of complexity-
effectiveness) and powerful (in terms of error detection and
recovery coverage) fault-tolerance mechanisms. Recent error
detection solutions [3], [6] monitor if there is a symptom
of hardware faults in order to provide low-cost fault toler-
ance schemes. Although these symptom-based error detection
schemes provide acceptable fault coverage, they require a
simple recovery mechanism to roll back to an error-free
state after detecting an error. In this paper, we introduce
SymptomTM, an architectural fault-tolerance scheme which
utilizes a symptom-based error detection scheme and leverages
Hardware Transactional Memory (HTM) mechanisms for error
recovery. To the best of our knowledge, this is the first
architectural fault tolerance proposal using HTM.

HTM systems provide mechanisms to abort transactions in
case of a conflict, thus they discard or undo all the tentative
memory updates and restart the execution from the beginning
of the transaction. Thus, transaction start can be viewed as
a checkpointed stable state. SymptomTM uses the TM abort
mechanisms for error recovery.

SymptomTM executes vulnerable code in a special trans-
action and it monitors if this transaction presents an error
symptom (fatal traps in our case). In case of a fatal trap
exception, SymptomTM aborts the transaction to recover from
the error. Thus, SymptomTM provides a simple recovery
mechanism. We designate fatal traps (e.g attempting to execute
an undefined instruction code) as our error symptom which is
examined by SWAT group for permanent faults in detail [2],
[3], [5]. They conclude that it has high error coverage (66%)
with no false positive impact unlike other error symptoms

commit

StartApplication

EndApplication

commit

commit

commit

monitoring

monitoring

monitoring

monitoring S
h

a
r e

d
m

e
m

o
ry

 writeset

 writeset

 writeset

 writeset

T
im

e

 readset

regFile

regFileCP

 readset

regFile

regFileCP

 readset

regFile

regFileCP

 readset

regFile

regFileCP

transaction

thread

Fig. 1. Design of SymptomTM

such as mispredictions in high confidence branches or high
OS activity.

II. BASIC DESIGN OF SYMPTOMTM

The SymptomTM system starts a single special transaction
at the beginning of the application (Figure 1). This special
transaction is executed atomically and isolated from the system
by writing to the local HTM write-set buffer until commit.
Hence, errors do not propagate out of the transaction. Also,
the execution of the transaction is monitored to detect if there
is any symptom of hardware errors, in this case fatal traps.
Unless any fatal trap exception is raised in the transaction,
the write-set is committed to shared memory at the end of
the transaction. Commit process starts whenever write-set size
equals the transactional log size. If a symptom is detected,
the transaction aborts and restarts the execution from the
beginning of the transaction. If there is no symptom at the
end of the second restarted execution, that means that the error
was transient and that it was corrected. If the second execution
raises the fatal trap exception signal again, this could be due to
a permanent fault. In this case, SymptomTM allocates another
core, copies the checkpointed state of the transaction to the
second core and re-executes the transaction. If the second core
does not raise an exception, that means the first core had a
permanent fault and finally it should be disconnected from
the system. Otherwise, either the error is caused by software
or SymptomTM can not recover from it. The algorithm used

0%

5%

10%

15%

20%

25%

30%

bz
ip
2

bw
av

es m
cf

m
ilc

gr
om

ac
s

le
sl
ie
3d

na
m

d

go
bm

k

po
vr

ay

hm
m

er

G
em

sF
D
TD

lib
qu

an
tu

m

h2
64

re
f

lb
m

om
ne

tp
p

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

av
er

ag
e

OPCODE PC RF-Special RF ALU

Fig. 2. Fatal Trap Rate of Injected Transient Faults

0%

10%

20%

30%
40%

50%

60%

70%

80%

bz
ip
2

bw
av

es m
cf

m
ilc

gr
om

ac
s

le
sl
ie
3d

na
m

d

go
bm

k

po
vr

ay

hm
m

er

G
em

sF
D
TD

lib
qu

an
tu

m

h2
64

re
f

lb
m

om
ne

tp
p

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

av
er

ag
e

OPCODE PC RF-Special RF ALU

Fig. 3. Fatal Trap Rate of Injected Permanent Faults

to diagnose the faulty core, is quite similar to the one utilized
in TBFD [2].

SymptomTM does not have a perceptible performance
degradation in the error free execution that makes it an
attractive mechanism for high reliability. It only increases
pressure on memory bandwidth since the write operations are
convoyed on commit. The main benefit of SymptomTM is
that it provides an error recovery mechanism by leveraging
the abort mechanism of TM. Atomic transactions guarantees
that error does not propagate to the other cores. Thus, rolling
back only the core that raises the fatal trap is adequate to
recover from faults since the rest of the system is error free.
For system-wide checkpointing and data sharing systems, once
a fault is detected, no core in the system can be assumed to be
fault-free. Due to this problem mSWAT [5] replays all cores
in the system up to three times to diagnose the faulty core.
SymptomTM replays one core once.

III. EVALUATION

We use the M5 full-system simulator [1] with an imple-
mentation of a Hardware Transactional Memory system that
uses lazy data versioning and lazy conflict detection [4]. We
extend this simulator with our SymptomTM implementations.
We use fault injection to measure the reliability performance
of SymptomTM for both transient and permanent faults.

Figure 2 and Figure 3 shows the hardware exception rate of
transient and permanent faults according to our fault injection
experiments. As expected, permanent faults are more likely to
induce catastrophic failures than transient faults (21.6% vs.
4.8%). We present the exception ratio for different microarchi-
tectural structures, because, in terms of system failures, each
structure in the microarchitecture is not equally vulnerable.
Note that our fault injection structures are different from
SWAT [3] so that our exception ratio for permanent faults
is different. Also, SWAT does not present these results for
transient faults in detail.

40%

50%

60%

70%

80%

90%

100%

0 10 100 1000 10000 100000 1000000

transient permanent

Fig. 4. Number of Stores Executed between Fault Injection and Exception
Raise

50%

60%

70%

80%

90%

100%

bz
ip
2

bw
av

es m
cf

m
ilc

gr
om

ac
s

le
sl
ie
3d

na
m

d

go
bm

k

po
vr

ay

hm
m

er

G
em

sF
D
TD

lib
qu

an
tu

m

h2
64

re
f

lb
m

om
ne

tp
p

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

av
er

ag
e

transient permanent

Fig. 5. Error Recovery Performance of SymptomTM

SymptomTM can detect all these critical faults. However,
it is able to recover from an error if it raises the exception
before the end of the transaction. Therefore, transaction size is
a critical issue for recovery. Also, the transaction size is limited
by the size of the local buffer area that is correlated with the
maximum number of store instructions within a transaction.
Figure 4 depicts the number of store instructions executed
between the bit flip and exception raise. 87% of catastrophic
failures induced by transient faults raise an exception within 32
store instructions (Transaction size in SymptomTM). However,
fewer amount of the permanent faults (70%) raise exceptions
within 32 store instructions. SymptomTM with a write-set of
32 entries recovers, on average, 86% and 65% of catastrophic
failures caused by transient faults and permanent faults re-
spectively (Figure 5). This coverage can be increased with
larger write-sets. As it is seen from Figure 4 within 1M stores
(~10M instructions which is the checkpoint interval in SWAT)
all catastrophic failures can be recovered.

REFERENCES

[1] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim,
Ali G. Saidi, and Steven K. Reinhardt. The M5 simulator: Modeling
networked systems. IEEE Micro, 26:52–60, 2006.

[2] Man lap Li, Pradeep Ramach, Swarup K. Sahoo, Sarita V. Adve,
Vikram S. Adve, and Yuanyuan Zhou. Trace-based microarchitecture-
level diagnosis of permanent hardware faults. In DSN, 2009.

[3] M. Li, P. Ramach, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou.
Understanding the propagation of hard errors to software and implications
for resilient system design. In ASPLOS, 2008.

[4] S. Sanyal, S. Roy, A. Cristal, O. S. Unsal, and M. Valero. Dynami-
cally filtering thread-local variables in lazy-lazy hardware transactional
memory. In HPCC, pages 171–179, 2009.

[5] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn Choi,
and Sarita V. Adve. mSWAT: low-cost hardware fault detection and
diagnosis for multicore systems. In MICRO, pages 122–132, 2009.

[6] Nicholas J. Wang and Sanjay J. Patel. ReStore: Symptom-based soft error
detection in microprocessors. TDSC, 3:188–201, 2006.

